选择的模糊算子对如下
$$ \begin{array} {c|c}{OP} & 模糊乘 \odot & 模糊加 \oplus \\ \hline 名称 &\color{red}{取最小} &\color{blue}{取最大} \\ \hline 计算公式 &\color{red}{min(p,q)} &\color{blue}{max(p,q) } \\ \hline \end{array} $$
模糊相乘矩阵
$$\tilde B=\begin{array} {c|c|c}{M_{10 \times10}} &A &B &C &D &E &F &G &H &I &J\\ \hline A &1 &0.58 &0 &0 &0 &0 &0 &0 &0 &0\\ \hline B &0 &1 &0 &0.34 &0 &0 &0 &0 &0 &0\\ \hline C &0 &0 &1 &0 &0 &0 &0.05 &0 &0 &0\\ \hline D &0 &0 &0 &1 &0 &0.02 &0 &0 &0 &0\\ \hline E &0 &0 &0.97 &0.04 &1 &0.52 &0 &0 &0 &0\\ \hline F &0 &0 &0 &0.34 &0 &1 &0 &0 &0 &0\\ \hline G &0 &0 &0.77 &0.29 &0.35 &0 &1 &0.72 &0 &0\\ \hline H &0 &0.92 &0 &0 &0 &0 &0 &1 &0 &0\\ \hline I &0 &0 &0 &0 &0 &0 &0 &0 &1 &0.49\\ \hline J &0.59 &0 &0 &0 &0 &0 &0.83 &0 &0 &1\\ \hline \end{array} $$
模糊可达矩阵
$$\tilde R=\begin{array} {c|c|c}{M_{10 \times10}} &A &B &C &D &E &F &G &H &I &J\\ \hline A &1 &0.58 &0 &0.34 &0 &0.02 &0 &0 &0 &0\\ \hline B &0 &1 &0 &0.34 &0 &0.02 &0 &0 &0 &0\\ \hline C &0 &0.05 &1 &0.05 &0.05 &0.05 &0.05 &0.05 &0 &0\\ \hline D &0 &0 &0 &1 &0 &0.02 &0 &0 &0 &0\\ \hline E &0 &0.05 &0.97 &0.34 &1 &0.52 &0.05 &0.05 &0 &0\\ \hline F &0 &0 &0 &0.34 &0 &1 &0 &0 &0 &0\\ \hline G &0 &0.72 &0.77 &0.34 &0.35 &0.35 &1 &0.72 &0 &0\\ \hline H &0 &0.92 &0 &0.34 &0 &0.02 &0 &1 &0 &0\\ \hline I &0.49 &0.49 &0.49 &0.34 &0.35 &0.35 &0.49 &0.49 &1 &0.49\\ \hline J &0.59 &0.72 &0.77 &0.34 &0.35 &0.35 &0.83 &0.72 &0 &1\\ \hline \end{array} $$
$$ 阈值集合\ddot \Delta = (0.02, 0.05, 0.34, 0.35, 0.49, 0.52, 0.58, 0.59, 0.72, 0.77, 0.83, 0.92, 0.97, 1) $$
求解出所有的对应的截矩阵
取截距的定义$$ r _{ij}= \left\{ \begin{array}{ll}1 & \textrm{当:$ \tilde r_{ij} ≥\lambda $}\\ 0 & \textrm{当:$ \tilde r_{ij} < \lambda $ } \end{array} \right.$$
当前的截距 $\lambda$ = 0.02
$$R_{0.02} =\begin{array} {c|c|c}{M_{10 \times10}} &A &B &C &D &E &F &G &H &I &J\\ \hline A &1 &1 &0 &1 &0 &1 &0 &0 &0 &0\\ \hline B &0 &1 &0 &1 &0 &1 &0 &0 &0 &0\\ \hline C &0 &1 &1 &1 &1 &1 &1 &1 &0 &0\\ \hline D &0 &0 &0 &1 &0 &1 &0 &0 &0 &0\\ \hline E &0 &1 &1 &1 &1 &1 &1 &1 &0 &0\\ \hline F &0 &0 &0 &1 &0 &1 &0 &0 &0 &0\\ \hline G &0 &1 &1 &1 &1 &1 &1 &1 &0 &0\\ \hline H &0 &1 &0 &1 &0 &1 &0 &1 &0 &0\\ \hline I &1 &1 &1 &1 &1 &1 &1 &1 &1 &1\\ \hline J &1 &1 &1 &1 &1 &1 &1 &1 &0 &1\\ \hline \end{array} $$
当前的截距 $\lambda$ = 0.05
$$R_{0.05} =\begin{array} {c|c|c}{M_{10 \times10}} &A &B &C &D &E &F &G &H &I &J\\ \hline A &1 &1 &0 &1 &0 &0 &0 &0 &0 &0\\ \hline B &0 &1 &0 &1 &0 &0 &0 &0 &0 &0\\ \hline C &0 &1 &1 &1 &1 &1 &1 &1 &0 &0\\ \hline D &0 &0 &0 &1 &0 &0 &0 &0 &0 &0\\ \hline E &0 &1 &1 &1 &1 &1 &1 &1 &0 &0\\ \hline F &0 &0 &0 &1 &0 &1 &0 &0 &0 &0\\ \hline G &0 &1 &1 &1 &1 &1 &1 &1 &0 &0\\ \hline H &0 &1 &0 &1 &0 &0 &0 &1 &0 &0\\ \hline I &1 &1 &1 &1 &1 &1 &1 &1 &1 &1\\ \hline J &1 &1 &1 &1 &1 &1 &1 &1 &0 &1\\ \hline \end{array} $$
当前的截距 $\lambda$ = 0.34
$$R_{0.34} =\begin{array} {c|c|c}{M_{10 \times10}} &A &B &C &D &E &F &G &H &I &J\\ \hline A &1 &1 &0 &1 &0 &0 &0 &0 &0 &0\\ \hline B &0 &1 &0 &1 &0 &0 &0 &0 &0 &0\\ \hline C &0 &0 &1 &0 &0 &0 &0 &0 &0 &0\\ \hline D &0 &0 &0 &1 &0 &0 &0 &0 &0 &0\\ \hline E &0 &0 &1 &1 &1 &1 &0 &0 &0 &0\\ \hline F &0 &0 &0 &1 &0 &1 &0 &0 &0 &0\\ \hline G &0 &1 &1 &1 &1 &1 &1 &1 &0 &0\\ \hline H &0 &1 &0 &1 &0 &0 &0 &1 &0 &0\\ \hline I &1 &1 &1 &1 &1 &1 &1 &1 &1 &1\\ \hline J &1 &1 &1 &1 &1 &1 &1 &1 &0 &1\\ \hline \end{array} $$
当前的截距 $\lambda$ = 0.35
$$R_{0.35} =\begin{array} {c|c|c}{M_{10 \times10}} &A &B &C &D &E &F &G &H &I &J\\ \hline A &1 &1 &0 &0 &0 &0 &0 &0 &0 &0\\ \hline B &0 &1 &0 &0 &0 &0 &0 &0 &0 &0\\ \hline C &0 &0 &1 &0 &0 &0 &0 &0 &0 &0\\ \hline D &0 &0 &0 &1 &0 &0 &0 &0 &0 &0\\ \hline E &0 &0 &1 &0 &1 &1 &0 &0 &0 &0\\ \hline F &0 &0 &0 &0 &0 &1 &0 &0 &0 &0\\ \hline G &0 &1 &1 &0 &1 &1 &1 &1 &0 &0\\ \hline H &0 &1 &0 &0 &0 &0 &0 &1 &0 &0\\ \hline I &1 &1 &1 &0 &1 &1 &1 &1 &1 &1\\ \hline J &1 &1 &1 &0 &1 &1 &1 &1 &0 &1\\ \hline \end{array} $$
当前的截距 $\lambda$ = 0.49
$$R_{0.49} =\begin{array} {c|c|c}{M_{10 \times10}} &A &B &C &D &E &F &G &H &I &J\\ \hline A &1 &1 &0 &0 &0 &0 &0 &0 &0 &0\\ \hline B &0 &1 &0 &0 &0 &0 &0 &0 &0 &0\\ \hline C &0 &0 &1 &0 &0 &0 &0 &0 &0 &0\\ \hline D &0 &0 &0 &1 &0 &0 &0 &0 &0 &0\\ \hline E &0 &0 &1 &0 &1 &1 &0 &0 &0 &0\\ \hline F &0 &0 &0 &0 &0 &1 &0 &0 &0 &0\\ \hline G &0 &1 &1 &0 &0 &0 &1 &1 &0 &0\\ \hline H &0 &1 &0 &0 &0 &0 &0 &1 &0 &0\\ \hline I &1 &1 &1 &0 &0 &0 &1 &1 &1 &1\\ \hline J &1 &1 &1 &0 &0 &0 &1 &1 &0 &1\\ \hline \end{array} $$
当前的截距 $\lambda$ = 0.52
$$R_{0.52} =\begin{array} {c|c|c}{M_{10 \times10}} &A &B &C &D &E &F &G &H &I &J\\ \hline A &1 &1 &0 &0 &0 &0 &0 &0 &0 &0\\ \hline B &0 &1 &0 &0 &0 &0 &0 &0 &0 &0\\ \hline C &0 &0 &1 &0 &0 &0 &0 &0 &0 &0\\ \hline D &0 &0 &0 &1 &0 &0 &0 &0 &0 &0\\ \hline E &0 &0 &1 &0 &1 &1 &0 &0 &0 &0\\ \hline F &0 &0 &0 &0 &0 &1 &0 &0 &0 &0\\ \hline G &0 &1 &1 &0 &0 &0 &1 &1 &0 &0\\ \hline H &0 &1 &0 &0 &0 &0 &0 &1 &0 &0\\ \hline I &0 &0 &0 &0 &0 &0 &0 &0 &1 &0\\ \hline J &1 &1 &1 &0 &0 &0 &1 &1 &0 &1\\ \hline \end{array} $$
当前的截距 $\lambda$ = 0.58
$$R_{0.58} =\begin{array} {c|c|c}{M_{10 \times10}} &A &B &C &D &E &F &G &H &I &J\\ \hline A &1 &1 &0 &0 &0 &0 &0 &0 &0 &0\\ \hline B &0 &1 &0 &0 &0 &0 &0 &0 &0 &0\\ \hline C &0 &0 &1 &0 &0 &0 &0 &0 &0 &0\\ \hline D &0 &0 &0 &1 &0 &0 &0 &0 &0 &0\\ \hline E &0 &0 &1 &0 &1 &0 &0 &0 &0 &0\\ \hline F &0 &0 &0 &0 &0 &1 &0 &0 &0 &0\\ \hline G &0 &1 &1 &0 &0 &0 &1 &1 &0 &0\\ \hline H &0 &1 &0 &0 &0 &0 &0 &1 &0 &0\\ \hline I &0 &0 &0 &0 &0 &0 &0 &0 &1 &0\\ \hline J &1 &1 &1 &0 &0 &0 &1 &1 &0 &1\\ \hline \end{array} $$
当前的截距 $\lambda$ = 0.59
$$R_{0.59} =\begin{array} {c|c|c}{M_{10 \times10}} &A &B &C &D &E &F &G &H &I &J\\ \hline A &1 &0 &0 &0 &0 &0 &0 &0 &0 &0\\ \hline B &0 &1 &0 &0 &0 &0 &0 &0 &0 &0\\ \hline C &0 &0 &1 &0 &0 &0 &0 &0 &0 &0\\ \hline D &0 &0 &0 &1 &0 &0 &0 &0 &0 &0\\ \hline E &0 &0 &1 &0 &1 &0 &0 &0 &0 &0\\ \hline F &0 &0 &0 &0 &0 &1 &0 &0 &0 &0\\ \hline G &0 &1 &1 &0 &0 &0 &1 &1 &0 &0\\ \hline H &0 &1 &0 &0 &0 &0 &0 &1 &0 &0\\ \hline I &0 &0 &0 &0 &0 &0 &0 &0 &1 &0\\ \hline J &1 &1 &1 &0 &0 &0 &1 &1 &0 &1\\ \hline \end{array} $$
当前的截距 $\lambda$ = 0.72
$$R_{0.72} =\begin{array} {c|c|c}{M_{10 \times10}} &A &B &C &D &E &F &G &H &I &J\\ \hline A &1 &0 &0 &0 &0 &0 &0 &0 &0 &0\\ \hline B &0 &1 &0 &0 &0 &0 &0 &0 &0 &0\\ \hline C &0 &0 &1 &0 &0 &0 &0 &0 &0 &0\\ \hline D &0 &0 &0 &1 &0 &0 &0 &0 &0 &0\\ \hline E &0 &0 &1 &0 &1 &0 &0 &0 &0 &0\\ \hline F &0 &0 &0 &0 &0 &1 &0 &0 &0 &0\\ \hline G &0 &1 &1 &0 &0 &0 &1 &1 &0 &0\\ \hline H &0 &1 &0 &0 &0 &0 &0 &1 &0 &0\\ \hline I &0 &0 &0 &0 &0 &0 &0 &0 &1 &0\\ \hline J &0 &1 &1 &0 &0 &0 &1 &1 &0 &1\\ \hline \end{array} $$
当前的截距 $\lambda$ = 0.77
$$R_{0.77} =\begin{array} {c|c|c}{M_{10 \times10}} &A &B &C &D &E &F &G &H &I &J\\ \hline A &1 &0 &0 &0 &0 &0 &0 &0 &0 &0\\ \hline B &0 &1 &0 &0 &0 &0 &0 &0 &0 &0\\ \hline C &0 &0 &1 &0 &0 &0 &0 &0 &0 &0\\ \hline D &0 &0 &0 &1 &0 &0 &0 &0 &0 &0\\ \hline E &0 &0 &1 &0 &1 &0 &0 &0 &0 &0\\ \hline F &0 &0 &0 &0 &0 &1 &0 &0 &0 &0\\ \hline G &0 &0 &1 &0 &0 &0 &1 &0 &0 &0\\ \hline H &0 &1 &0 &0 &0 &0 &0 &1 &0 &0\\ \hline I &0 &0 &0 &0 &0 &0 &0 &0 &1 &0\\ \hline J &0 &0 &1 &0 &0 &0 &1 &0 &0 &1\\ \hline \end{array} $$
当前的截距 $\lambda$ = 0.83
$$R_{0.83} =\begin{array} {c|c|c}{M_{10 \times10}} &A &B &C &D &E &F &G &H &I &J\\ \hline A &1 &0 &0 &0 &0 &0 &0 &0 &0 &0\\ \hline B &0 &1 &0 &0 &0 &0 &0 &0 &0 &0\\ \hline C &0 &0 &1 &0 &0 &0 &0 &0 &0 &0\\ \hline D &0 &0 &0 &1 &0 &0 &0 &0 &0 &0\\ \hline E &0 &0 &1 &0 &1 &0 &0 &0 &0 &0\\ \hline F &0 &0 &0 &0 &0 &1 &0 &0 &0 &0\\ \hline G &0 &0 &0 &0 &0 &0 &1 &0 &0 &0\\ \hline H &0 &1 &0 &0 &0 &0 &0 &1 &0 &0\\ \hline I &0 &0 &0 &0 &0 &0 &0 &0 &1 &0\\ \hline J &0 &0 &0 &0 &0 &0 &1 &0 &0 &1\\ \hline \end{array} $$
当前的截距 $\lambda$ = 0.92
$$R_{0.92} =\begin{array} {c|c|c}{M_{10 \times10}} &A &B &C &D &E &F &G &H &I &J\\ \hline A &1 &0 &0 &0 &0 &0 &0 &0 &0 &0\\ \hline B &0 &1 &0 &0 &0 &0 &0 &0 &0 &0\\ \hline C &0 &0 &1 &0 &0 &0 &0 &0 &0 &0\\ \hline D &0 &0 &0 &1 &0 &0 &0 &0 &0 &0\\ \hline E &0 &0 &1 &0 &1 &0 &0 &0 &0 &0\\ \hline F &0 &0 &0 &0 &0 &1 &0 &0 &0 &0\\ \hline G &0 &0 &0 &0 &0 &0 &1 &0 &0 &0\\ \hline H &0 &1 &0 &0 &0 &0 &0 &1 &0 &0\\ \hline I &0 &0 &0 &0 &0 &0 &0 &0 &1 &0\\ \hline J &0 &0 &0 &0 &0 &0 &0 &0 &0 &1\\ \hline \end{array} $$
当前的截距 $\lambda$ = 0.97
$$R_{0.97} =\begin{array} {c|c|c}{M_{10 \times10}} &A &B &C &D &E &F &G &H &I &J\\ \hline A &1 &0 &0 &0 &0 &0 &0 &0 &0 &0\\ \hline B &0 &1 &0 &0 &0 &0 &0 &0 &0 &0\\ \hline C &0 &0 &1 &0 &0 &0 &0 &0 &0 &0\\ \hline D &0 &0 &0 &1 &0 &0 &0 &0 &0 &0\\ \hline E &0 &0 &1 &0 &1 &0 &0 &0 &0 &0\\ \hline F &0 &0 &0 &0 &0 &1 &0 &0 &0 &0\\ \hline G &0 &0 &0 &0 &0 &0 &1 &0 &0 &0\\ \hline H &0 &0 &0 &0 &0 &0 &0 &1 &0 &0\\ \hline I &0 &0 &0 &0 &0 &0 &0 &0 &1 &0\\ \hline J &0 &0 &0 &0 &0 &0 &0 &0 &0 &1\\ \hline \end{array} $$
当前的截距 $\lambda$ = 1
$$R_{1} =\begin{array} {c|c|c}{M_{10 \times10}} &A &B &C &D &E &F &G &H &I &J\\ \hline A &1 &0 &0 &0 &0 &0 &0 &0 &0 &0\\ \hline B &0 &1 &0 &0 &0 &0 &0 &0 &0 &0\\ \hline C &0 &0 &1 &0 &0 &0 &0 &0 &0 &0\\ \hline D &0 &0 &0 &1 &0 &0 &0 &0 &0 &0\\ \hline E &0 &0 &0 &0 &1 &0 &0 &0 &0 &0\\ \hline F &0 &0 &0 &0 &0 &1 &0 &0 &0 &0\\ \hline G &0 &0 &0 &0 &0 &0 &1 &0 &0 &0\\ \hline H &0 &0 &0 &0 &0 &0 &0 &1 &0 &0\\ \hline I &0 &0 &0 &0 &0 &0 &0 &0 &1 &0\\ \hline J &0 &0 &0 &0 &0 &0 &0 &0 &0 &1\\ \hline \end{array} $$