流程图
输入
直接影响矩阵
参数设置
第一、归一化方法的设置
第二、截距值的获得
输出结果
第一、一组成对的对抗层级拓扑图
第二、带综合影响值的MR的直角坐标几何分布图
原始矩阵(直接影响矩阵)为
$$Ori=\begin{array}{|c|c|c|c|c|c|c|}\hline {M_{15 \times15}} &A1 &A2 &A3 &A4 &B1 &B2 &B3 &C1 &C2 &C3 &D1 &D2 &D3 &E1 &E2\\ \hline A1 &0 &41 &30 &36 &44 &40 &32 &35 &41 &25 &41 &33 &35 &45 &42\\ \hline A2 &20 &0 &23 &30 &35 &39 &37 &24 &36 &24 &41 &32 &21 &44 &45\\ \hline A3 &35 &25 &0 &39 &29 &26 &22 &17 &19 &12 &36 &35 &30 &20 &23\\ \hline A4 &10 &20 &15 &0 &36 &34 &30 &24 &23 &10 &40 &35 &20 &30 &33\\ \hline B1 &24 &27 &10 &24 &0 &32 &34 &24 &28 &10 &32 &34 &13 &28 &28\\ \hline B2 &26 &27 &12 &15 &29 &0 &12 &29 &37 &10 &37 &36 &28 &32 &29\\ \hline B3 &14 &13 &10 &36 &37 &20 &0 &10 &37 &11 &36 &35 &14 &30 &30\\ \hline C1 &23 &16 &12 &38 &33 &39 &13 &0 &32 &33 &37 &36 &18 &29 &31\\ \hline C2 &28 &37 &17 &23 &39 &46 &12 &28 &0 &10 &42 &39 &20 &36 &40\\ \hline C3 &10 &25 &11 &18 &11 &15 &37 &36 &40 &0 &39 &30 &13 &17 &27\\ \hline D1 &31 &25 &20 &12 &40 &47 &13 &39 &45 &10 &0 &35 &20 &40 &40\\ \hline D2 &10 &30 &30 &11 &10 &10 &10 &10 &38 &38 &13 &0 &30 &13 &32\\ \hline D3 &33 &15 &33 &39 &21 &20 &16 &23 &22 &20 &30 &36 &0 &27 &25\\ \hline E1 &32 &35 &20 &23 &43 &46 &43 &32 &41 &12 &39 &36 &25 &0 &44\\ \hline E2 &29 &36 &17 &30 &40 &48 &40 &33 &44 &10 &40 &38 &21 &43 &0\\ \hline \end{array} $$
规范直接关系矩阵求解过程 $$ \require{cancel} \require{AMScd} \begin{CD} O @>>>N \\ \end{CD} $$
- $$\mathcal{N}=\begin{array}{|c|c|c|c|c|c|c|}\hline {M_{15 \times15}} &A1 &A2 &A3 &A4 &B1 &B2 &B3 &C1 &C2 &C3 &D1 &D2 &D3 &E1 &E2\\ \hline A1 &0 &0.082 &0.06 &0.072 &0.087 &0.08 &0.064 &0.07 &0.082 &0.05 &0.082 &0.066 &0.07 &0.089 &0.083\\ \hline A2 &0.04 &0 &0.046 &0.06 &0.07 &0.078 &0.074 &0.048 &0.072 &0.048 &0.082 &0.064 &0.042 &0.087 &0.089\\ \hline A3 &0.07 &0.05 &0 &0.078 &0.058 &0.052 &0.044 &0.034 &0.038 &0.024 &0.072 &0.07 &0.06 &0.04 &0.046\\ \hline A4 &0.02 &0.04 &0.03 &0 &0.072 &0.068 &0.06 &0.048 &0.046 &0.02 &0.08 &0.07 &0.04 &0.06 &0.066\\ \hline B1 &0.048 &0.054 &0.02 &0.048 &0 &0.064 &0.068 &0.048 &0.056 &0.02 &0.064 &0.068 &0.026 &0.056 &0.056\\ \hline B2 &0.052 &0.054 &0.024 &0.03 &0.058 &0 &0.024 &0.058 &0.074 &0.02 &0.074 &0.072 &0.056 &0.064 &0.058\\ \hline B3 &0.028 &0.026 &0.02 &0.072 &0.074 &0.04 &0 &0.02 &0.074 &0.022 &0.072 &0.07 &0.028 &0.06 &0.06\\ \hline C1 &0.046 &0.032 &0.024 &0.076 &0.066 &0.078 &0.026 &0 &0.064 &0.066 &0.074 &0.072 &0.036 &0.058 &0.062\\ \hline C2 &0.056 &0.074 &0.034 &0.046 &0.078 &0.091 &0.024 &0.056 &0 &0.02 &0.083 &0.078 &0.04 &0.072 &0.08\\ \hline C3 &0.02 &0.05 &0.022 &0.036 &0.022 &0.03 &0.074 &0.072 &0.08 &0 &0.078 &0.06 &0.026 &0.034 &0.054\\ \hline D1 &0.062 &0.05 &0.04 &0.024 &0.08 &0.093 &0.026 &0.078 &0.089 &0.02 &0 &0.07 &0.04 &0.08 &0.08\\ \hline D2 &0.02 &0.06 &0.06 &0.022 &0.02 &0.02 &0.02 &0.02 &0.076 &0.076 &0.026 &0 &0.06 &0.026 &0.064\\ \hline D3 &0.066 &0.03 &0.066 &0.078 &0.042 &0.04 &0.032 &0.046 &0.044 &0.04 &0.06 &0.072 &0 &0.054 &0.05\\ \hline E1 &0.064 &0.07 &0.04 &0.046 &0.085 &0.091 &0.085 &0.064 &0.082 &0.024 &0.078 &0.072 &0.05 &0 &0.087\\ \hline E2 &0.058 &0.072 &0.034 &0.06 &0.08 &0.095 &0.08 &0.066 &0.087 &0.02 &0.08 &0.076 &0.042 &0.085 &0\\ \hline \end{array} $$
综合影响矩阵求解过程 $$\begin{CD} N @>>>T \\ \end{CD} $$
综合影响矩阵如下
$T=\mathcal{N}(I-\mathcal{N})^{-1}$
$$T=\begin{array}{|c|c|c|c|c|c|c|}\hline {M_{15 \times15}} &A1 &A2 &A3 &A4 &B1 &B2 &B3 &C1 &C2 &C3 &D1 &D2 &D3 &E1 &E2\\ \hline A1 &0.211 &0.317 &0.223 &0.295 &0.367 &0.374 &0.279 &0.298 &0.383 &0.197 &0.387 &0.369 &0.263 &0.361 &0.376\\ \hline A2 &0.221 &0.211 &0.188 &0.254 &0.315 &0.334 &0.26 &0.248 &0.336 &0.175 &0.347 &0.328 &0.212 &0.324 &0.343\\ \hline A3 &0.215 &0.219 &0.121 &0.236 &0.258 &0.262 &0.198 &0.199 &0.255 &0.131 &0.288 &0.285 &0.199 &0.237 &0.257\\ \hline A4 &0.166 &0.205 &0.145 &0.157 &0.266 &0.271 &0.207 &0.206 &0.258 &0.123 &0.289 &0.279 &0.175 &0.249 &0.269\\ \hline B1 &0.188 &0.215 &0.134 &0.2 &0.195 &0.264 &0.212 &0.203 &0.263 &0.122 &0.271 &0.273 &0.16 &0.243 &0.257\\ \hline B2 &0.199 &0.223 &0.143 &0.19 &0.257 &0.213 &0.177 &0.22 &0.287 &0.127 &0.288 &0.285 &0.193 &0.257 &0.267\\ \hline B3 &0.163 &0.183 &0.128 &0.212 &0.254 &0.233 &0.141 &0.171 &0.268 &0.117 &0.267 &0.265 &0.155 &0.236 &0.25\\ \hline C1 &0.2 &0.213 &0.149 &0.239 &0.275 &0.297 &0.189 &0.176 &0.292 &0.175 &0.302 &0.298 &0.183 &0.262 &0.282\\ \hline C2 &0.225 &0.267 &0.17 &0.228 &0.306 &0.331 &0.202 &0.244 &0.252 &0.143 &0.331 &0.323 &0.201 &0.295 &0.319\\ \hline C3 &0.153 &0.201 &0.128 &0.18 &0.205 &0.221 &0.207 &0.216 &0.272 &0.097 &0.271 &0.253 &0.15 &0.211 &0.242\\ \hline D1 &0.232 &0.247 &0.175 &0.21 &0.309 &0.334 &0.204 &0.264 &0.335 &0.143 &0.255 &0.317 &0.201 &0.302 &0.319\\ \hline D2 &0.138 &0.192 &0.151 &0.15 &0.178 &0.186 &0.143 &0.15 &0.242 &0.156 &0.2 &0.172 &0.167 &0.18 &0.226\\ \hline D3 &0.208 &0.198 &0.18 &0.233 &0.239 &0.246 &0.184 &0.206 &0.256 &0.144 &0.273 &0.282 &0.14 &0.244 &0.256\\ \hline E1 &0.251 &0.285 &0.19 &0.251 &0.34 &0.357 &0.277 &0.271 &0.356 &0.16 &0.355 &0.347 &0.227 &0.254 &0.352\\ \hline E2 &0.245 &0.286 &0.184 &0.261 &0.334 &0.36 &0.271 &0.272 &0.36 &0.155 &0.355 &0.349 &0.219 &0.332 &0.271\\ \hline \end{array} $$
区段截取的处理
$T$的相关统计数据求解
平均数,均值 $\bar{x}$
$\bar{x}= 0.23847004980457 $
总体标准差$\sigma=\sqrt { \frac {\sum \limits_{i=1}^{n^2} ({x_i-\bar{x}})^2 }{n^2} } $ ( $n$为要素的数目)
$\sigma = 0.064876562186252 $
样本标准差一:$S=\sqrt { \frac {\sum \limits_{i=1}^{n^2} ({x_i-\bar{x}})^2 }{n^2-1} }$ ( $n$为要素的数目)
$S = 0.065021214678399 $
样本标准差二:$ \bar {S}=\sqrt { \frac {\sum \limits_{i=1}^{n^2} ({x_i-\bar{x}})^2 }{n^2-n} } $ ( $n$为要素的数目)
$ \bar {S}= 0.067153621759897 $
标准误差 $\sigma_{s}= \frac {\sigma}{n }$ ( $n$为要素的数目)
$\sigma_{s}= 0.015898003320304 $
方差 $ {\sigma}^{2}= \sigma ^{2} $
$\sigma^{2}= 0.0042089683211066 $
选择的截距方式为:$\lambda= \bar{x}+ \bar S$
$\lambda=0.30562367156446 $
\begin{CD} T@>\lambda=0.30562367156446>> A \\ \end{CD}
$$ a_{ij}= \begin{cases} 1 , \text{ $e_i$}\rightarrow \text{$e_j$ 当: $ t_{ij} > \lambda=0.30562367156446 $} \\ 0, \text{ $e_i$}\rightarrow \text{$e_j$ 当: $ t_{ij} < \lambda=0.30562367156446 $} \end{cases} $$
$\lambda= 0.30562367156446$ 截取后的关系矩阵$ A$
$$ A=\begin{array}{c|c|c|c|c|c|c}{M_{15 \times15}} &A1 &A2 &A3 &A4 &B1 &B2 &B3 &C1 &C2 &C3 &D1 &D2 &D3 &E1 &E2\\ \hline A1 &0 &1 &0 &0 &1 &1 &0 &0 &1 &0 &1 &1 &0 &1 &1\\ \hline A2 &0 &0 &0 &0 &1 &1 &0 &0 &1 &0 &1 &1 &0 &1 &1\\ \hline A3 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0\\ \hline A4 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0\\ \hline B1 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0\\ \hline B2 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0\\ \hline B3 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0\\ \hline C1 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0\\ \hline C2 &0 &0 &0 &0 &1 &1 &0 &0 &0 &0 &1 &1 &0 &0 &1\\ \hline C3 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0\\ \hline D1 &0 &0 &0 &0 &1 &1 &0 &0 &1 &0 &0 &1 &0 &0 &1\\ \hline D2 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0\\ \hline D3 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0\\ \hline E1 &0 &0 &0 &0 &1 &1 &0 &0 &1 &0 &1 &1 &0 &0 &1\\ \hline E2 &0 &0 &0 &0 &1 &1 &0 &0 &1 &0 &1 &1 &0 &1 &0\\ \hline \end{array} $$