原始矩阵(直接影响矩阵)为


$$Ori=\begin{array}{|c|c|c|c|c|c|c|}\hline {M_{11 \times11}} &F1 &F2 &F3 &F4 &F5 &F6 &F7 &F8 &F9 &F10 &F11\\ \hline F1 &0 &0 &0 &0 &1 &0 &1 &1 &2 &2 &1\\ \hline F2 &0 &0 &0 &0 &0 &0 &1 &1 &2 &3 &1\\ \hline F3 &0 &0 &0 &0 &0 &1 &2 &1 &1 &1 &3\\ \hline F4 &1 &2 &2 &0 &0 &0 &1 &0 &0 &0 &1\\ \hline F5 &0 &3 &3 &0 &0 &0 &1 &0 &0 &0 &1\\ \hline F6 &1 &0 &0 &0 &0 &0 &2 &2 &3 &2 &2\\ \hline F7 &0 &0 &0 &0 &0 &0 &0 &2 &3 &3 &2\\ \hline F8 &0 &0 &0 &0 &0 &0 &0 &0 &3 &3 &3\\ \hline F9 &3 &0 &3 &0 &0 &0 &1 &0 &0 &3 &2\\ \hline F10 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0\\ \hline F11 &3 &0 &0 &4 &0 &0 &0 &0 &0 &1 &0\\ \hline \end{array} $$

规范直接关系矩阵求解过程 $$ \require{cancel} \require{AMScd} \begin{CD} O @>>>N \\ \end{CD} $$


  • $$\mathcal{N}=\begin{array}{|c|c|c|c|c|c|c|}\hline {M_{11 \times11}} &F1 &F2 &F3 &F4 &F5 &F6 &F7 &F8 &F9 &F10 &F11\\ \hline F1 &0 &0 &0 &0 &0.054 &0 &0.054 &0.054 &0.108 &0.108 &0.054\\ \hline F2 &0 &0 &0 &0 &0 &0 &0.054 &0.054 &0.108 &0.163 &0.054\\ \hline F3 &0 &0 &0 &0 &0 &0.054 &0.108 &0.054 &0.054 &0.054 &0.163\\ \hline F4 &0.054 &0.108 &0.108 &0 &0 &0 &0.054 &0 &0 &0 &0.054\\ \hline F5 &0 &0.163 &0.163 &0 &0 &0 &0.054 &0 &0 &0 &0.054\\ \hline F6 &0.054 &0 &0 &0 &0 &0 &0.108 &0.108 &0.163 &0.108 &0.108\\ \hline F7 &0 &0 &0 &0 &0 &0 &0 &0.108 &0.163 &0.163 &0.108\\ \hline F8 &0 &0 &0 &0 &0 &0 &0 &0 &0.163 &0.163 &0.163\\ \hline F9 &0.163 &0 &0.163 &0 &0 &0 &0.054 &0 &0 &0.163 &0.108\\ \hline F10 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0\\ \hline F11 &0.163 &0 &0 &0.217 &0 &0 &0 &0 &0 &0.054 &0\\ \hline \end{array} $$

综合影响矩阵求解过程 $$\begin{CD} N @>>>T \\ \end{CD} $$


  综合影响矩阵如下

$T=\mathcal{N}(I-\mathcal{N})^{-1}$

$$T=\begin{array}{|c|c|c|c|c|c|c|}\hline {M_{11 \times11}} &F1 &F2 &F3 &F4 &F5 &F6 &F7 &F8 &F9 &F10 &F11\\ \hline F1 &0.04 &0.012 &0.034 &0.022 &0.056 &0.002 &0.073 &0.067 &0.139 &0.168 &0.101\\ \hline F2 &0.039 &0.003 &0.025 &0.021 &0.002 &0.001 &0.068 &0.065 &0.136 &0.218 &0.095\\ \hline F3 &0.058 &0.006 &0.023 &0.047 &0.003 &0.055 &0.129 &0.079 &0.105 &0.131 &0.217\\ \hline F4 &0.08 &0.112 &0.119 &0.023 &0.004 &0.006 &0.082 &0.026 &0.046 &0.065 &0.104\\ \hline F5 &0.029 &0.166 &0.174 &0.025 &0.002 &0.009 &0.089 &0.031 &0.052 &0.075 &0.116\\ \hline F6 &0.123 &0.005 &0.042 &0.04 &0.007 &0.002 &0.135 &0.133 &0.223 &0.215 &0.185\\ \hline F7 &0.06 &0.004 &0.036 &0.035 &0.003 &0.002 &0.02 &0.116 &0.194 &0.235 &0.162\\ \hline F8 &0.063 &0.005 &0.034 &0.043 &0.003 &0.002 &0.02 &0.008 &0.177 &0.216 &0.197\\ \hline F9 &0.202 &0.006 &0.177 &0.038 &0.011 &0.01 &0.091 &0.032 &0.054 &0.234 &0.173\\ \hline F10 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0\\ \hline F11 &0.187 &0.026 &0.031 &0.225 &0.01 &0.002 &0.03 &0.017 &0.033 &0.096 &0.039\\ \hline \end{array} $$

区段截取的处理


$T$的 平均数$\bar{x} $ 与 总体标准差$ \sigma $的求解

均值$\bar{x} $

$\bar{x}= 0.067296470895096 $

总体标准差$\sigma=\sqrt { \frac {\sum \limits_{i=1}^{n^2} ({x_i-\bar{x}})^2 }{n^2} } $

$\sigma = 0.069678069617807 $

区段截取最小边界$ \lambda_{min}= \bar{x} $

$\lambda_{min} = 0.067296470895096 $

区段截取最大边界$\lambda_{max}= \bar{x} +\sigma $

$\lambda_{max} = 0.1369745405129 $

\begin{CD} T@>区段截取>> \tilde A \\ \end{CD}

$$ \tilde a_{ij}= \begin{cases} 1 , \text{ $e_i$}\rightarrow \text{$e_j$ 当: $ t_{ij} > \lambda_{max} $} \\ t_{ij} , \text{ $e_i$}\rightarrow \text{$e_j $ 当:$\lambda_{min} ≤ t_{ij} ≤ \lambda_{max}$ } \\ 0, \text{ $e_i$}\rightarrow \text{$e_j$ 当: $ t_{ij} < \lambda_{min} $} \end{cases} $$

$[\lambda_{min}- \lambda_{max} ] $ 截取后的模糊矩阵$ \tilde A$

   $ \lambda_{min} =0.067296470895096$

   $ \lambda_{max} =0.1369745405129$

$$ \tilde A=\begin{array}{c|c|c|c|c|c|c}{M_{11 \times11}} &F1 &F2 &F3 &F4 &F5 &F6 &F7 &F8 &F9 &F10 &F11\\ \hline F1 &0 &0 &0 &0 &0 &0 &0.07274 &0 &1 &1 &0.10092\\ \hline F2 &0 &0 &0 &0 &0 &0 &0.06791 &0 &0.13618 &1 &0.09463\\ \hline F3 &0 &0 &0 &0 &0 &0 &0.12882 &0.0789 &0.10518 &0.13134 &1\\ \hline F4 &0.08028 &0.11163 &0.11912 &0 &0 &0 &0.08222 &0 &0 &0 &0.1044\\ \hline F5 &0 &1 &1 &0 &0 &0 &0.08895 &0 &0 &0.07471 &0.11582\\ \hline F6 &0.12293 &0 &0 &0 &0 &0 &0.13482 &0.13256 &1 &1 &1\\ \hline F7 &0 &0 &0 &0 &0 &0 &0 &0.11631 &1 &1 &1\\ \hline F8 &0 &0 &0 &0 &0 &0 &0 &0 &1 &1 &1\\ \hline F9 &1 &0 &1 &0 &0 &0 &0.09134 &0 &0 &1 &1\\ \hline F10 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0\\ \hline F11 &1 &0 &0 &1 &0 &0 &0 &0 &0 &0.09557 &0\\ \hline \end{array} $$