原始矩阵(直接影响矩阵)为
$$Ori=\begin{array}{|c|c|c|c|c|c|c|}\hline {M_{12 \times12}} &H1 &H2 &H3 &K1 &K2 &K3 &X1 &X2 &X3 &S1 &S2 &S3\\ \hline H1 &0 &2 &1 &0 &9 &0 &2 &9 &1 &0 &2 &1\\ \hline H2 &3 &0 &0 &0 &9 &8 &0 &7 &0 &3 &2 &1\\ \hline H3 &3 &9 &0 &3 &0 &0 &3 &0 &0 &0 &2 &6\\ \hline K1 &3 &9 &4 &0 &0 &0 &1 &5 &0 &0 &2 &5\\ \hline K2 &6 &9 &0 &0 &0 &0 &0 &0 &5 &0 &2 &1\\ \hline K3 &8 &5 &2 &0 &1 &0 &2 &0 &9 &0 &2 &1\\ \hline X1 &3 &0 &0 &0 &0 &0 &0 &0 &9 &0 &2 &1\\ \hline X2 &0 &6 &2 &5 &0 &4 &1 &0 &0 &2 &2 &1\\ \hline X3 &9 &0 &0 &0 &0 &8 &7 &8 &8 &0 &2 &1\\ \hline S1 &0 &0 &3 &3 &3 &5 &8 &8 &8 &0 &0 &1\\ \hline S2 &0 &3 &0 &0 &0 &8 &4 &8 &8 &0 &0 &1\\ \hline S3 &5 &0 &0 &4 &5 &8 &8 &8 &8 &0 &2 &0\\ \hline \end{array} $$
规范直接关系矩阵求解过程 $$ \require{cancel} \require{AMScd} \begin{CD} O @>>>N \\ \end{CD} $$
- $$\mathcal{N}=\begin{array}{|c|c|c|c|c|c|c|}\hline {M_{12 \times12}} &H1 &H2 &H3 &K1 &K2 &K3 &X1 &X2 &X3 &S1 &S2 &S3\\ \hline H1 &0 &0.034 &0.017 &0 &0.152 &0 &0.034 &0.152 &0.017 &0 &0.034 &0.017\\ \hline H2 &0.051 &0 &0 &0 &0.152 &0.135 &0 &0.118 &0 &0.051 &0.034 &0.017\\ \hline H3 &0.051 &0.152 &0 &0.051 &0 &0 &0.051 &0 &0 &0 &0.034 &0.101\\ \hline K1 &0.051 &0.152 &0.067 &0 &0 &0 &0.017 &0.084 &0 &0 &0.034 &0.084\\ \hline K2 &0.101 &0.152 &0 &0 &0 &0 &0 &0 &0.084 &0 &0.034 &0.017\\ \hline K3 &0.135 &0.084 &0.034 &0 &0.017 &0 &0.034 &0 &0.152 &0 &0.034 &0.017\\ \hline X1 &0.051 &0 &0 &0 &0 &0 &0 &0 &0.152 &0 &0.034 &0.017\\ \hline X2 &0 &0.101 &0.034 &0.084 &0 &0.067 &0.017 &0 &0 &0.034 &0.034 &0.017\\ \hline X3 &0.152 &0 &0 &0 &0 &0.135 &0.118 &0.135 &0 &0 &0.034 &0.017\\ \hline S1 &0 &0 &0.051 &0.051 &0.051 &0.084 &0.135 &0.135 &0.135 &0 &0 &0.017\\ \hline S2 &0 &0.051 &0 &0 &0 &0.135 &0.067 &0.135 &0.135 &0 &0 &0.017\\ \hline S3 &0.084 &0 &0 &0.067 &0.084 &0.135 &0.135 &0.135 &0.135 &0 &0.034 &0\\ \hline \end{array} $$
综合影响矩阵求解过程 $$\begin{CD} N @>>>T \\ \end{CD} $$
综合影响矩阵如下
$T=\mathcal{N}(I-\mathcal{N})^{-1}$
$$T=\begin{array}{|c|c|c|c|c|c|c|}\hline {M_{12 \times12}} &H1 &H2 &H3 &K1 &K2 &K3 &X1 &X2 &X3 &S1 &S2 &S3\\ \hline H1 &0.047 &0.096 &0.028 &0.021 &0.177 &0.048 &0.059 &0.194 &0.063 &0.011 &0.06 &0.034\\ \hline H2 &0.117 &0.076 &0.019 &0.021 &0.19 &0.186 &0.041 &0.178 &0.074 &0.06 &0.065 &0.037\\ \hline H3 &0.101 &0.191 &0.012 &0.066 &0.056 &0.064 &0.087 &0.077 &0.055 &0.012 &0.062 &0.12\\ \hline K1 &0.101 &0.204 &0.079 &0.025 &0.057 &0.069 &0.057 &0.158 &0.051 &0.016 &0.064 &0.107\\ \hline K2 &0.147 &0.183 &0.008 &0.009 &0.054 &0.058 &0.032 &0.074 &0.118 &0.012 &0.058 &0.031\\ \hline K3 &0.197 &0.127 &0.043 &0.013 &0.071 &0.064 &0.08 &0.088 &0.198 &0.009 &0.065 &0.037\\ \hline X1 &0.09 &0.019 &0.005 &0.006 &0.019 &0.04 &0.034 &0.051 &0.176 &0.003 &0.049 &0.026\\ \hline X2 &0.047 &0.149 &0.049 &0.096 &0.037 &0.114 &0.048 &0.058 &0.047 &0.043 &0.057 &0.04\\ \hline X3 &0.208 &0.059 &0.018 &0.021 &0.047 &0.181 &0.155 &0.2 &0.074 &0.01 &0.067 &0.037\\ \hline S1 &0.084 &0.072 &0.069 &0.075 &0.081 &0.148 &0.185 &0.203 &0.207 &0.01 &0.039 &0.047\\ \hline S2 &0.076 &0.102 &0.017 &0.021 &0.034 &0.199 &0.113 &0.197 &0.197 &0.012 &0.033 &0.036\\ \hline S3 &0.183 &0.088 &0.024 &0.091 &0.132 &0.209 &0.193 &0.228 &0.227 &0.012 &0.081 &0.033\\ \hline \end{array} $$