原始矩阵(直接影响矩阵)为


$$Ori=\begin{array}{|c|c|c|c|c|c|c|}\hline {M_{12 \times12}} &H1 &H2 &H3 &K1 &K2 &K3 &X1 &X2 &X3 &S1 &S2 &S3\\ \hline H1 &0 &2 &1 &0 &9 &0 &2 &9 &1 &0 &2 &1\\ \hline H2 &3 &0 &0 &0 &9 &8 &0 &7 &0 &3 &2 &1\\ \hline H3 &3 &9 &0 &3 &0 &0 &3 &0 &0 &0 &2 &6\\ \hline K1 &3 &9 &4 &0 &0 &0 &1 &5 &0 &0 &2 &5\\ \hline K2 &6 &9 &0 &0 &0 &0 &0 &0 &5 &0 &2 &1\\ \hline K3 &8 &5 &2 &0 &1 &0 &2 &0 &9 &0 &2 &1\\ \hline X1 &3 &0 &0 &0 &0 &0 &0 &0 &0 &0 &2 &1\\ \hline X2 &0 &6 &2 &0 &0 &0 &1 &0 &0 &2 &2 &1\\ \hline X3 &9 &0 &0 &0 &0 &0 &1 &0 &0 &0 &2 &1\\ \hline S1 &0 &0 &3 &3 &3 &3 &0 &0 &0 &0 &0 &1\\ \hline S2 &0 &3 &0 &0 &0 &0 &0 &0 &0 &0 &0 &1\\ \hline S3 &5 &0 &0 &4 &5 &8 &0 &0 &0 &0 &2 &0\\ \hline \end{array} $$

规范直接关系矩阵求解过程 $$ \require{cancel} \require{AMScd} \begin{CD} O @>>>N \\ \end{CD} $$


  • $$\mathcal{N}=\begin{array}{|c|c|c|c|c|c|c|}\hline {M_{12 \times12}} &H1 &H2 &H3 &K1 &K2 &K3 &X1 &X2 &X3 &S1 &S2 &S3\\ \hline H1 &0 &0.037 &0.018 &0 &0.166 &0 &0.037 &0.166 &0.018 &0 &0.037 &0.018\\ \hline H2 &0.055 &0 &0 &0 &0.166 &0.148 &0 &0.129 &0 &0.055 &0.037 &0.018\\ \hline H3 &0.055 &0.166 &0 &0.055 &0 &0 &0.055 &0 &0 &0 &0.037 &0.111\\ \hline K1 &0.055 &0.166 &0.074 &0 &0 &0 &0.018 &0.092 &0 &0 &0.037 &0.092\\ \hline K2 &0.111 &0.166 &0 &0 &0 &0 &0 &0 &0.092 &0 &0.037 &0.018\\ \hline K3 &0.148 &0.092 &0.037 &0 &0.018 &0 &0.037 &0 &0.166 &0 &0.037 &0.018\\ \hline X1 &0.055 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0.037 &0.018\\ \hline X2 &0 &0.111 &0.037 &0 &0 &0 &0.018 &0 &0 &0.037 &0.037 &0.018\\ \hline X3 &0.166 &0 &0 &0 &0 &0 &0.018 &0 &0 &0 &0.037 &0.018\\ \hline S1 &0 &0 &0.055 &0.055 &0.055 &0.055 &0 &0 &0 &0 &0 &0.018\\ \hline S2 &0 &0.055 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0.018\\ \hline S3 &0.092 &0 &0 &0.074 &0.092 &0.148 &0 &0 &0 &0 &0.037 &0\\ \hline \end{array} $$

综合影响矩阵求解过程 $$\begin{CD} N @>>>T \\ \end{CD} $$



  综合影响矩阵如下

$T=\mathcal{N}(I-\mathcal{N})^{-1}$

$$T=\begin{array}{|c|c|c|c|c|c|c|}\hline {M_{12 \times12}} &H1 &H2 &H3 &K1 &K2 &K3 &X1 &X2 &X3 &S1 &S2 &S3\\ \hline H1 &0.045 &0.102 &0.028 &0.005 &0.195 &0.021 &0.045 &0.187 &0.041 &0.013 &0.063 &0.035\\ \hline H2 &0.122 &0.081 &0.019 &0.008 &0.21 &0.169 &0.016 &0.161 &0.05 &0.066 &0.069 &0.039\\ \hline H3 &0.104 &0.207 &0.011 &0.066 &0.065 &0.051 &0.064 &0.05 &0.016 &0.013 &0.065 &0.13\\ \hline K1 &0.103 &0.221 &0.085 &0.014 &0.066 &0.051 &0.032 &0.139 &0.016 &0.017 &0.068 &0.116\\ \hline K2 &0.155 &0.196 &0.007 &0.003 &0.063 &0.034 &0.01 &0.051 &0.107 &0.013 &0.061 &0.032\\ \hline K3 &0.207 &0.133 &0.045 &0.006 &0.08 &0.026 &0.052 &0.052 &0.182 &0.009 &0.067 &0.039\\ \hline X1 &0.061 &0.009 &0.002 &0.002 &0.014 &0.005 &0.003 &0.011 &0.003 &0.001 &0.042 &0.022\\ \hline X2 &0.023 &0.133 &0.042 &0.007 &0.032 &0.027 &0.023 &0.022 &0.008 &0.045 &0.05 &0.03\\ \hline X3 &0.178 &0.021 &0.005 &0.002 &0.036 &0.007 &0.026 &0.032 &0.008 &0.002 &0.049 &0.026\\ \hline S1 &0.034 &0.043 &0.064 &0.062 &0.073 &0.067 &0.009 &0.017 &0.019 &0.003 &0.016 &0.036\\ \hline S2 &0.01 &0.061 &0.001 &0.002 &0.014 &0.012 &0.001 &0.01 &0.004 &0.004 &0.005 &0.021\\ \hline S3 &0.149 &0.066 &0.016 &0.077 &0.133 &0.161 &0.015 &0.04 &0.042 &0.005 &0.063 &0.021\\ \hline \end{array} $$