原始矩阵(直接影响矩阵)为
$$Ori=\begin{array}{|c|c|c|c|c|c|c|}\hline {M_{12 \times12}} &R1 &R2 &R3 &K1 &K2 &K3 &X1 &X2 &X3 &T1 &T2 &T3\\ \hline R1 &0 &2 &1 &0 &0 &5 &2 &9 &1 &0 &2 &1\\ \hline R2 &3 &0 &0 &0 &0 &5 &0 &7 &7 &7 &7 &7\\ \hline R3 &3 &9 &0 &6 &6 &5 &6 &6 &6 &6 &6 &6\\ \hline K1 &3 &9 &4 &0 &0 &5 &1 &0 &8 &4 &8 &5\\ \hline K2 &6 &9 &0 &0 &0 &5 &0 &0 &5 &0 &2 &1\\ \hline K3 &8 &5 &2 &0 &1 &0 &2 &0 &9 &0 &2 &1\\ \hline X1 &3 &0 &0 &0 &0 &5 &0 &0 &0 &0 &2 &1\\ \hline X2 &0 &6 &2 &0 &0 &5 &1 &0 &0 &2 &2 &1\\ \hline X3 &9 &0 &0 &0 &0 &5 &1 &0 &0 &0 &2 &1\\ \hline T1 &0 &0 &3 &3 &3 &5 &0 &0 &0 &0 &0 &1\\ \hline T2 &0 &3 &0 &0 &0 &5 &0 &0 &0 &0 &0 &1\\ \hline T3 &5 &0 &0 &0 &0 &5 &0 &0 &0 &0 &2 &0\\ \hline \end{array} $$
规范直接关系矩阵求解过程 $$ \require{cancel} \require{AMScd} \begin{CD} O @>>>N \\ \end{CD} $$
- $$\mathcal{N}=\begin{array}{|c|c|c|c|c|c|c|}\hline {M_{12 \times12}} &R1 &R2 &R3 &K1 &K2 &K3 &X1 &X2 &X3 &T1 &T2 &T3\\ \hline R1 &0 &0.023 &0.012 &0 &0 &0.059 &0.023 &0.106 &0.012 &0 &0.023 &0.012\\ \hline R2 &0.035 &0 &0 &0 &0 &0.059 &0 &0.082 &0.082 &0.082 &0.082 &0.082\\ \hline R3 &0.035 &0.106 &0 &0.07 &0.07 &0.059 &0.07 &0.07 &0.07 &0.07 &0.07 &0.07\\ \hline K1 &0.035 &0.106 &0.047 &0 &0 &0.059 &0.012 &0 &0.094 &0.047 &0.094 &0.059\\ \hline K2 &0.07 &0.106 &0 &0 &0 &0.059 &0 &0 &0.059 &0 &0.023 &0.012\\ \hline K3 &0.094 &0.059 &0.023 &0 &0.012 &0 &0.023 &0 &0.106 &0 &0.023 &0.012\\ \hline X1 &0.035 &0 &0 &0 &0 &0.059 &0 &0 &0 &0 &0.023 &0.012\\ \hline X2 &0 &0.07 &0.023 &0 &0 &0.059 &0.012 &0 &0 &0.023 &0.023 &0.012\\ \hline X3 &0.106 &0 &0 &0 &0 &0.059 &0.012 &0 &0 &0 &0.023 &0.012\\ \hline T1 &0 &0 &0.035 &0.035 &0.035 &0.059 &0 &0 &0 &0 &0 &0.012\\ \hline T2 &0 &0.035 &0 &0 &0 &0.059 &0 &0 &0 &0 &0 &0.012\\ \hline T3 &0.059 &0 &0 &0 &0 &0.059 &0 &0 &0 &0 &0.023 &0\\ \hline \end{array} $$
综合影响矩阵求解过程 $$\begin{CD} N @>>>T \\ \end{CD} $$
综合影响矩阵如下
$T=\mathcal{N}(I-\mathcal{N})^{-1}$
$$T=\begin{array}{|c|c|c|c|c|c|c|}\hline {M_{12 \times12}} &R1 &R2 &R3 &K1 &K2 &K3 &X1 &X2 &X3 &T1 &T2 &T3\\ \hline R1 &0.014 &0.04 &0.017 &0.001 &0.002 &0.076 &0.028 &0.112 &0.025 &0.007 &0.035 &0.02\\ \hline R2 &0.061 &0.018 &0.008 &0.004 &0.005 &0.092 &0.006 &0.091 &0.095 &0.087 &0.095 &0.091\\ \hline R3 &0.079 &0.142 &0.012 &0.074 &0.076 &0.115 &0.079 &0.091 &0.107 &0.089 &0.105 &0.096\\ \hline K1 &0.07 &0.126 &0.053 &0.006 &0.007 &0.099 &0.021 &0.021 &0.12 &0.062 &0.118 &0.079\\ \hline K2 &0.093 &0.116 &0.004 &0.001 &0.002 &0.082 &0.006 &0.02 &0.078 &0.01 &0.041 &0.025\\ \hline K3 &0.116 &0.07 &0.026 &0.002 &0.014 &0.028 &0.03 &0.02 &0.119 &0.008 &0.04 &0.024\\ \hline X1 &0.044 &0.007 &0.002 &0 &0.001 &0.065 &0.003 &0.005 &0.008 &0.001 &0.027 &0.014\\ \hline X2 &0.015 &0.081 &0.027 &0.003 &0.004 &0.074 &0.016 &0.01 &0.017 &0.032 &0.036 &0.023\\ \hline X3 &0.116 &0.009 &0.003 &0 &0.001 &0.071 &0.017 &0.013 &0.01 &0.001 &0.03 &0.016\\ \hline T1 &0.016 &0.018 &0.039 &0.038 &0.039 &0.072 &0.006 &0.006 &0.018 &0.006 &0.012 &0.02\\ \hline T2 &0.01 &0.04 &0.002 &0 &0.001 &0.064 &0.002 &0.004 &0.01 &0.004 &0.006 &0.016\\ \hline T3 &0.067 &0.007 &0.003 &0 &0.001 &0.066 &0.003 &0.008 &0.009 &0.001 &0.028 &0.003\\ \hline \end{array} $$