原始矩阵(直接影响矩阵)为
$$Ori=\begin{array}{|c|c|c|c|c|c|c|}\hline {M_{12 \times12}} &R1 &R2 &R3 &K1 &K2 &K3 &X1 &X2 &X3 &T1 &T2 &T3\\ \hline R1 &0 &2 &1 &0 &0 &5 &2 &9 &1 &0 &2 &1\\ \hline R2 &3 &0 &0 &0 &0 &5 &0 &7 &7 &7 &7 &7\\ \hline R3 &3 &9 &0 &6 &6 &5 &6 &6 &6 &6 &6 &6\\ \hline K1 &3 &9 &4 &0 &0 &5 &1 &0 &8 &4 &8 &5\\ \hline K2 &6 &9 &0 &0 &0 &5 &0 &0 &5 &0 &2 &1\\ \hline K3 &8 &5 &2 &0 &1 &0 &2 &0 &9 &0 &2 &1\\ \hline X1 &3 &0 &0 &0 &0 &5 &0 &0 &0 &0 &2 &1\\ \hline X2 &0 &6 &2 &0 &0 &5 &1 &0 &0 &2 &2 &1\\ \hline X3 &9 &0 &0 &0 &0 &5 &1 &0 &0 &0 &2 &1\\ \hline T1 &0 &0 &3 &3 &3 &5 &0 &0 &0 &0 &0 &1\\ \hline T2 &0 &3 &0 &0 &0 &5 &0 &0 &0 &0 &0 &1\\ \hline T3 &5 &0 &0 &0 &0 &5 &0 &0 &0 &0 &2 &0\\ \hline \end{array} $$
规范直接关系矩阵求解过程 $$ \require{cancel} \require{AMScd} \begin{CD} O @>>>N \\ \end{CD} $$
- $$\mathcal{N}=\begin{array}{|c|c|c|c|c|c|c|}\hline {M_{12 \times12}} &R1 &R2 &R3 &K1 &K2 &K3 &X1 &X2 &X3 &T1 &T2 &T3\\ \hline R1 &0 &0.036 &0.018 &0 &0 &0.091 &0.036 &0.164 &0.018 &0 &0.036 &0.018\\ \hline R2 &0.055 &0 &0 &0 &0 &0.091 &0 &0.127 &0.127 &0.127 &0.127 &0.127\\ \hline R3 &0.055 &0.164 &0 &0.109 &0.109 &0.091 &0.109 &0.109 &0.109 &0.109 &0.109 &0.109\\ \hline K1 &0.055 &0.164 &0.073 &0 &0 &0.091 &0.018 &0 &0.145 &0.073 &0.145 &0.091\\ \hline K2 &0.109 &0.164 &0 &0 &0 &0.091 &0 &0 &0.091 &0 &0.036 &0.018\\ \hline K3 &0.145 &0.091 &0.036 &0 &0.018 &0 &0.036 &0 &0.164 &0 &0.036 &0.018\\ \hline X1 &0.055 &0 &0 &0 &0 &0.091 &0 &0 &0 &0 &0.036 &0.018\\ \hline X2 &0 &0.109 &0.036 &0 &0 &0.091 &0.018 &0 &0 &0.036 &0.036 &0.018\\ \hline X3 &0.164 &0 &0 &0 &0 &0.091 &0.018 &0 &0 &0 &0.036 &0.018\\ \hline T1 &0 &0 &0.055 &0.055 &0.055 &0.091 &0 &0 &0 &0 &0 &0.018\\ \hline T2 &0 &0.055 &0 &0 &0 &0.091 &0 &0 &0 &0 &0 &0.018\\ \hline T3 &0.091 &0 &0 &0 &0 &0.091 &0 &0 &0 &0 &0.036 &0\\ \hline \end{array} $$
综合影响矩阵求解过程 $$\begin{CD} N @>>>T \\ \end{CD} $$
综合影响矩阵如下
$T=\mathcal{N}(I-\mathcal{N})^{-1}$
$$T=\begin{array}{|c|c|c|c|c|c|c|}\hline {M_{12 \times12}} &R1 &R2 &R3 &K1 &K2 &K3 &X1 &X2 &X3 &T1 &T2 &T3\\ \hline R1 &0.045 &0.083 &0.033 &0.005 &0.007 &0.146 &0.051 &0.185 &0.058 &0.021 &0.071 &0.043\\ \hline R2 &0.132 &0.056 &0.024 &0.01 &0.014 &0.187 &0.02 &0.159 &0.173 &0.144 &0.169 &0.156\\ \hline R3 &0.191 &0.272 &0.037 &0.122 &0.127 &0.259 &0.139 &0.179 &0.223 &0.163 &0.213 &0.186\\ \hline K1 &0.16 &0.229 &0.093 &0.016 &0.02 &0.213 &0.048 &0.065 &0.227 &0.116 &0.219 &0.151\\ \hline K2 &0.176 &0.199 &0.013 &0.003 &0.006 &0.163 &0.017 &0.055 &0.148 &0.029 &0.086 &0.058\\ \hline K3 &0.212 &0.13 &0.047 &0.006 &0.026 &0.082 &0.057 &0.056 &0.206 &0.024 &0.084 &0.054\\ \hline X1 &0.079 &0.019 &0.006 &0.001 &0.003 &0.112 &0.008 &0.016 &0.023 &0.004 &0.049 &0.027\\ \hline X2 &0.047 &0.142 &0.047 &0.009 &0.011 &0.141 &0.032 &0.031 &0.049 &0.061 &0.074 &0.05\\ \hline X3 &0.195 &0.029 &0.01 &0.001 &0.004 &0.13 &0.032 &0.037 &0.03 &0.006 &0.058 &0.032\\ \hline T1 &0.05 &0.05 &0.067 &0.063 &0.065 &0.135 &0.017 &0.022 &0.052 &0.019 &0.037 &0.045\\ \hline T2 &0.029 &0.07 &0.006 &0.001 &0.003 &0.111 &0.006 &0.014 &0.029 &0.01 &0.018 &0.032\\ \hline T3 &0.115 &0.022 &0.007 &0.001 &0.003 &0.116 &0.01 &0.022 &0.025 &0.004 &0.051 &0.01\\ \hline \end{array} $$